eq2(0, 0) -> true
eq2(0, s1(x)) -> false
eq2(s1(x), 0) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
app2(nil, y) -> y
app2(add2(n, x), y) -> add2(n, app2(x, y))
min1(add2(n, nil)) -> n
min1(add2(n, add2(m, x))) -> if_min2(le2(n, m), add2(n, add2(m, x)))
if_min2(true, add2(n, add2(m, x))) -> min1(add2(n, x))
if_min2(false, add2(n, add2(m, x))) -> min1(add2(m, x))
rm2(n, nil) -> nil
rm2(n, add2(m, x)) -> if_rm3(eq2(n, m), n, add2(m, x))
if_rm3(true, n, add2(m, x)) -> rm2(n, x)
if_rm3(false, n, add2(m, x)) -> add2(m, rm2(n, x))
minsort2(nil, nil) -> nil
minsort2(add2(n, x), y) -> if_minsort3(eq2(n, min1(add2(n, x))), add2(n, x), y)
if_minsort3(true, add2(n, x), y) -> add2(n, minsort2(app2(rm2(n, x), y), nil))
if_minsort3(false, add2(n, x), y) -> minsort2(x, add2(n, y))
↳ QTRS
↳ DependencyPairsProof
eq2(0, 0) -> true
eq2(0, s1(x)) -> false
eq2(s1(x), 0) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
app2(nil, y) -> y
app2(add2(n, x), y) -> add2(n, app2(x, y))
min1(add2(n, nil)) -> n
min1(add2(n, add2(m, x))) -> if_min2(le2(n, m), add2(n, add2(m, x)))
if_min2(true, add2(n, add2(m, x))) -> min1(add2(n, x))
if_min2(false, add2(n, add2(m, x))) -> min1(add2(m, x))
rm2(n, nil) -> nil
rm2(n, add2(m, x)) -> if_rm3(eq2(n, m), n, add2(m, x))
if_rm3(true, n, add2(m, x)) -> rm2(n, x)
if_rm3(false, n, add2(m, x)) -> add2(m, rm2(n, x))
minsort2(nil, nil) -> nil
minsort2(add2(n, x), y) -> if_minsort3(eq2(n, min1(add2(n, x))), add2(n, x), y)
if_minsort3(true, add2(n, x), y) -> add2(n, minsort2(app2(rm2(n, x), y), nil))
if_minsort3(false, add2(n, x), y) -> minsort2(x, add2(n, y))
MINSORT2(add2(n, x), y) -> IF_MINSORT3(eq2(n, min1(add2(n, x))), add2(n, x), y)
MINSORT2(add2(n, x), y) -> MIN1(add2(n, x))
MIN1(add2(n, add2(m, x))) -> IF_MIN2(le2(n, m), add2(n, add2(m, x)))
IF_MINSORT3(true, add2(n, x), y) -> APP2(rm2(n, x), y)
IF_RM3(true, n, add2(m, x)) -> RM2(n, x)
IF_MIN2(false, add2(n, add2(m, x))) -> MIN1(add2(m, x))
IF_MINSORT3(false, add2(n, x), y) -> MINSORT2(x, add2(n, y))
IF_MIN2(true, add2(n, add2(m, x))) -> MIN1(add2(n, x))
RM2(n, add2(m, x)) -> EQ2(n, m)
EQ2(s1(x), s1(y)) -> EQ2(x, y)
IF_MINSORT3(true, add2(n, x), y) -> MINSORT2(app2(rm2(n, x), y), nil)
MIN1(add2(n, add2(m, x))) -> LE2(n, m)
RM2(n, add2(m, x)) -> IF_RM3(eq2(n, m), n, add2(m, x))
LE2(s1(x), s1(y)) -> LE2(x, y)
MINSORT2(add2(n, x), y) -> EQ2(n, min1(add2(n, x)))
IF_RM3(false, n, add2(m, x)) -> RM2(n, x)
IF_MINSORT3(true, add2(n, x), y) -> RM2(n, x)
APP2(add2(n, x), y) -> APP2(x, y)
eq2(0, 0) -> true
eq2(0, s1(x)) -> false
eq2(s1(x), 0) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
app2(nil, y) -> y
app2(add2(n, x), y) -> add2(n, app2(x, y))
min1(add2(n, nil)) -> n
min1(add2(n, add2(m, x))) -> if_min2(le2(n, m), add2(n, add2(m, x)))
if_min2(true, add2(n, add2(m, x))) -> min1(add2(n, x))
if_min2(false, add2(n, add2(m, x))) -> min1(add2(m, x))
rm2(n, nil) -> nil
rm2(n, add2(m, x)) -> if_rm3(eq2(n, m), n, add2(m, x))
if_rm3(true, n, add2(m, x)) -> rm2(n, x)
if_rm3(false, n, add2(m, x)) -> add2(m, rm2(n, x))
minsort2(nil, nil) -> nil
minsort2(add2(n, x), y) -> if_minsort3(eq2(n, min1(add2(n, x))), add2(n, x), y)
if_minsort3(true, add2(n, x), y) -> add2(n, minsort2(app2(rm2(n, x), y), nil))
if_minsort3(false, add2(n, x), y) -> minsort2(x, add2(n, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
MINSORT2(add2(n, x), y) -> IF_MINSORT3(eq2(n, min1(add2(n, x))), add2(n, x), y)
MINSORT2(add2(n, x), y) -> MIN1(add2(n, x))
MIN1(add2(n, add2(m, x))) -> IF_MIN2(le2(n, m), add2(n, add2(m, x)))
IF_MINSORT3(true, add2(n, x), y) -> APP2(rm2(n, x), y)
IF_RM3(true, n, add2(m, x)) -> RM2(n, x)
IF_MIN2(false, add2(n, add2(m, x))) -> MIN1(add2(m, x))
IF_MINSORT3(false, add2(n, x), y) -> MINSORT2(x, add2(n, y))
IF_MIN2(true, add2(n, add2(m, x))) -> MIN1(add2(n, x))
RM2(n, add2(m, x)) -> EQ2(n, m)
EQ2(s1(x), s1(y)) -> EQ2(x, y)
IF_MINSORT3(true, add2(n, x), y) -> MINSORT2(app2(rm2(n, x), y), nil)
MIN1(add2(n, add2(m, x))) -> LE2(n, m)
RM2(n, add2(m, x)) -> IF_RM3(eq2(n, m), n, add2(m, x))
LE2(s1(x), s1(y)) -> LE2(x, y)
MINSORT2(add2(n, x), y) -> EQ2(n, min1(add2(n, x)))
IF_RM3(false, n, add2(m, x)) -> RM2(n, x)
IF_MINSORT3(true, add2(n, x), y) -> RM2(n, x)
APP2(add2(n, x), y) -> APP2(x, y)
eq2(0, 0) -> true
eq2(0, s1(x)) -> false
eq2(s1(x), 0) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
app2(nil, y) -> y
app2(add2(n, x), y) -> add2(n, app2(x, y))
min1(add2(n, nil)) -> n
min1(add2(n, add2(m, x))) -> if_min2(le2(n, m), add2(n, add2(m, x)))
if_min2(true, add2(n, add2(m, x))) -> min1(add2(n, x))
if_min2(false, add2(n, add2(m, x))) -> min1(add2(m, x))
rm2(n, nil) -> nil
rm2(n, add2(m, x)) -> if_rm3(eq2(n, m), n, add2(m, x))
if_rm3(true, n, add2(m, x)) -> rm2(n, x)
if_rm3(false, n, add2(m, x)) -> add2(m, rm2(n, x))
minsort2(nil, nil) -> nil
minsort2(add2(n, x), y) -> if_minsort3(eq2(n, min1(add2(n, x))), add2(n, x), y)
if_minsort3(true, add2(n, x), y) -> add2(n, minsort2(app2(rm2(n, x), y), nil))
if_minsort3(false, add2(n, x), y) -> minsort2(x, add2(n, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
APP2(add2(n, x), y) -> APP2(x, y)
eq2(0, 0) -> true
eq2(0, s1(x)) -> false
eq2(s1(x), 0) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
app2(nil, y) -> y
app2(add2(n, x), y) -> add2(n, app2(x, y))
min1(add2(n, nil)) -> n
min1(add2(n, add2(m, x))) -> if_min2(le2(n, m), add2(n, add2(m, x)))
if_min2(true, add2(n, add2(m, x))) -> min1(add2(n, x))
if_min2(false, add2(n, add2(m, x))) -> min1(add2(m, x))
rm2(n, nil) -> nil
rm2(n, add2(m, x)) -> if_rm3(eq2(n, m), n, add2(m, x))
if_rm3(true, n, add2(m, x)) -> rm2(n, x)
if_rm3(false, n, add2(m, x)) -> add2(m, rm2(n, x))
minsort2(nil, nil) -> nil
minsort2(add2(n, x), y) -> if_minsort3(eq2(n, min1(add2(n, x))), add2(n, x), y)
if_minsort3(true, add2(n, x), y) -> add2(n, minsort2(app2(rm2(n, x), y), nil))
if_minsort3(false, add2(n, x), y) -> minsort2(x, add2(n, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
APP2(add2(n, x), y) -> APP2(x, y)
POL(APP2(x1, x2)) = 2·x1
POL(add2(x1, x2)) = 1 + 2·x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
eq2(0, 0) -> true
eq2(0, s1(x)) -> false
eq2(s1(x), 0) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
app2(nil, y) -> y
app2(add2(n, x), y) -> add2(n, app2(x, y))
min1(add2(n, nil)) -> n
min1(add2(n, add2(m, x))) -> if_min2(le2(n, m), add2(n, add2(m, x)))
if_min2(true, add2(n, add2(m, x))) -> min1(add2(n, x))
if_min2(false, add2(n, add2(m, x))) -> min1(add2(m, x))
rm2(n, nil) -> nil
rm2(n, add2(m, x)) -> if_rm3(eq2(n, m), n, add2(m, x))
if_rm3(true, n, add2(m, x)) -> rm2(n, x)
if_rm3(false, n, add2(m, x)) -> add2(m, rm2(n, x))
minsort2(nil, nil) -> nil
minsort2(add2(n, x), y) -> if_minsort3(eq2(n, min1(add2(n, x))), add2(n, x), y)
if_minsort3(true, add2(n, x), y) -> add2(n, minsort2(app2(rm2(n, x), y), nil))
if_minsort3(false, add2(n, x), y) -> minsort2(x, add2(n, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
LE2(s1(x), s1(y)) -> LE2(x, y)
eq2(0, 0) -> true
eq2(0, s1(x)) -> false
eq2(s1(x), 0) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
app2(nil, y) -> y
app2(add2(n, x), y) -> add2(n, app2(x, y))
min1(add2(n, nil)) -> n
min1(add2(n, add2(m, x))) -> if_min2(le2(n, m), add2(n, add2(m, x)))
if_min2(true, add2(n, add2(m, x))) -> min1(add2(n, x))
if_min2(false, add2(n, add2(m, x))) -> min1(add2(m, x))
rm2(n, nil) -> nil
rm2(n, add2(m, x)) -> if_rm3(eq2(n, m), n, add2(m, x))
if_rm3(true, n, add2(m, x)) -> rm2(n, x)
if_rm3(false, n, add2(m, x)) -> add2(m, rm2(n, x))
minsort2(nil, nil) -> nil
minsort2(add2(n, x), y) -> if_minsort3(eq2(n, min1(add2(n, x))), add2(n, x), y)
if_minsort3(true, add2(n, x), y) -> add2(n, minsort2(app2(rm2(n, x), y), nil))
if_minsort3(false, add2(n, x), y) -> minsort2(x, add2(n, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LE2(s1(x), s1(y)) -> LE2(x, y)
POL(LE2(x1, x2)) = 2·x1 + x2
POL(s1(x1)) = 2 + 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
eq2(0, 0) -> true
eq2(0, s1(x)) -> false
eq2(s1(x), 0) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
app2(nil, y) -> y
app2(add2(n, x), y) -> add2(n, app2(x, y))
min1(add2(n, nil)) -> n
min1(add2(n, add2(m, x))) -> if_min2(le2(n, m), add2(n, add2(m, x)))
if_min2(true, add2(n, add2(m, x))) -> min1(add2(n, x))
if_min2(false, add2(n, add2(m, x))) -> min1(add2(m, x))
rm2(n, nil) -> nil
rm2(n, add2(m, x)) -> if_rm3(eq2(n, m), n, add2(m, x))
if_rm3(true, n, add2(m, x)) -> rm2(n, x)
if_rm3(false, n, add2(m, x)) -> add2(m, rm2(n, x))
minsort2(nil, nil) -> nil
minsort2(add2(n, x), y) -> if_minsort3(eq2(n, min1(add2(n, x))), add2(n, x), y)
if_minsort3(true, add2(n, x), y) -> add2(n, minsort2(app2(rm2(n, x), y), nil))
if_minsort3(false, add2(n, x), y) -> minsort2(x, add2(n, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
MIN1(add2(n, add2(m, x))) -> IF_MIN2(le2(n, m), add2(n, add2(m, x)))
IF_MIN2(false, add2(n, add2(m, x))) -> MIN1(add2(m, x))
IF_MIN2(true, add2(n, add2(m, x))) -> MIN1(add2(n, x))
eq2(0, 0) -> true
eq2(0, s1(x)) -> false
eq2(s1(x), 0) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
app2(nil, y) -> y
app2(add2(n, x), y) -> add2(n, app2(x, y))
min1(add2(n, nil)) -> n
min1(add2(n, add2(m, x))) -> if_min2(le2(n, m), add2(n, add2(m, x)))
if_min2(true, add2(n, add2(m, x))) -> min1(add2(n, x))
if_min2(false, add2(n, add2(m, x))) -> min1(add2(m, x))
rm2(n, nil) -> nil
rm2(n, add2(m, x)) -> if_rm3(eq2(n, m), n, add2(m, x))
if_rm3(true, n, add2(m, x)) -> rm2(n, x)
if_rm3(false, n, add2(m, x)) -> add2(m, rm2(n, x))
minsort2(nil, nil) -> nil
minsort2(add2(n, x), y) -> if_minsort3(eq2(n, min1(add2(n, x))), add2(n, x), y)
if_minsort3(true, add2(n, x), y) -> add2(n, minsort2(app2(rm2(n, x), y), nil))
if_minsort3(false, add2(n, x), y) -> minsort2(x, add2(n, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MIN1(add2(n, add2(m, x))) -> IF_MIN2(le2(n, m), add2(n, add2(m, x)))
IF_MIN2(false, add2(n, add2(m, x))) -> MIN1(add2(m, x))
IF_MIN2(true, add2(n, add2(m, x))) -> MIN1(add2(n, x))
POL(0) = 2
POL(IF_MIN2(x1, x2)) = 1 + 2·x2
POL(MIN1(x1)) = 2 + 2·x1
POL(add2(x1, x2)) = 2 + x2
POL(false) = 1
POL(le2(x1, x2)) = 1
POL(s1(x1)) = 1 + 2·x1
POL(true) = 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
eq2(0, 0) -> true
eq2(0, s1(x)) -> false
eq2(s1(x), 0) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
app2(nil, y) -> y
app2(add2(n, x), y) -> add2(n, app2(x, y))
min1(add2(n, nil)) -> n
min1(add2(n, add2(m, x))) -> if_min2(le2(n, m), add2(n, add2(m, x)))
if_min2(true, add2(n, add2(m, x))) -> min1(add2(n, x))
if_min2(false, add2(n, add2(m, x))) -> min1(add2(m, x))
rm2(n, nil) -> nil
rm2(n, add2(m, x)) -> if_rm3(eq2(n, m), n, add2(m, x))
if_rm3(true, n, add2(m, x)) -> rm2(n, x)
if_rm3(false, n, add2(m, x)) -> add2(m, rm2(n, x))
minsort2(nil, nil) -> nil
minsort2(add2(n, x), y) -> if_minsort3(eq2(n, min1(add2(n, x))), add2(n, x), y)
if_minsort3(true, add2(n, x), y) -> add2(n, minsort2(app2(rm2(n, x), y), nil))
if_minsort3(false, add2(n, x), y) -> minsort2(x, add2(n, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
EQ2(s1(x), s1(y)) -> EQ2(x, y)
eq2(0, 0) -> true
eq2(0, s1(x)) -> false
eq2(s1(x), 0) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
app2(nil, y) -> y
app2(add2(n, x), y) -> add2(n, app2(x, y))
min1(add2(n, nil)) -> n
min1(add2(n, add2(m, x))) -> if_min2(le2(n, m), add2(n, add2(m, x)))
if_min2(true, add2(n, add2(m, x))) -> min1(add2(n, x))
if_min2(false, add2(n, add2(m, x))) -> min1(add2(m, x))
rm2(n, nil) -> nil
rm2(n, add2(m, x)) -> if_rm3(eq2(n, m), n, add2(m, x))
if_rm3(true, n, add2(m, x)) -> rm2(n, x)
if_rm3(false, n, add2(m, x)) -> add2(m, rm2(n, x))
minsort2(nil, nil) -> nil
minsort2(add2(n, x), y) -> if_minsort3(eq2(n, min1(add2(n, x))), add2(n, x), y)
if_minsort3(true, add2(n, x), y) -> add2(n, minsort2(app2(rm2(n, x), y), nil))
if_minsort3(false, add2(n, x), y) -> minsort2(x, add2(n, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
EQ2(s1(x), s1(y)) -> EQ2(x, y)
POL(EQ2(x1, x2)) = 2·x1 + x2
POL(s1(x1)) = 2 + 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
eq2(0, 0) -> true
eq2(0, s1(x)) -> false
eq2(s1(x), 0) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
app2(nil, y) -> y
app2(add2(n, x), y) -> add2(n, app2(x, y))
min1(add2(n, nil)) -> n
min1(add2(n, add2(m, x))) -> if_min2(le2(n, m), add2(n, add2(m, x)))
if_min2(true, add2(n, add2(m, x))) -> min1(add2(n, x))
if_min2(false, add2(n, add2(m, x))) -> min1(add2(m, x))
rm2(n, nil) -> nil
rm2(n, add2(m, x)) -> if_rm3(eq2(n, m), n, add2(m, x))
if_rm3(true, n, add2(m, x)) -> rm2(n, x)
if_rm3(false, n, add2(m, x)) -> add2(m, rm2(n, x))
minsort2(nil, nil) -> nil
minsort2(add2(n, x), y) -> if_minsort3(eq2(n, min1(add2(n, x))), add2(n, x), y)
if_minsort3(true, add2(n, x), y) -> add2(n, minsort2(app2(rm2(n, x), y), nil))
if_minsort3(false, add2(n, x), y) -> minsort2(x, add2(n, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
RM2(n, add2(m, x)) -> IF_RM3(eq2(n, m), n, add2(m, x))
IF_RM3(true, n, add2(m, x)) -> RM2(n, x)
IF_RM3(false, n, add2(m, x)) -> RM2(n, x)
eq2(0, 0) -> true
eq2(0, s1(x)) -> false
eq2(s1(x), 0) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
app2(nil, y) -> y
app2(add2(n, x), y) -> add2(n, app2(x, y))
min1(add2(n, nil)) -> n
min1(add2(n, add2(m, x))) -> if_min2(le2(n, m), add2(n, add2(m, x)))
if_min2(true, add2(n, add2(m, x))) -> min1(add2(n, x))
if_min2(false, add2(n, add2(m, x))) -> min1(add2(m, x))
rm2(n, nil) -> nil
rm2(n, add2(m, x)) -> if_rm3(eq2(n, m), n, add2(m, x))
if_rm3(true, n, add2(m, x)) -> rm2(n, x)
if_rm3(false, n, add2(m, x)) -> add2(m, rm2(n, x))
minsort2(nil, nil) -> nil
minsort2(add2(n, x), y) -> if_minsort3(eq2(n, min1(add2(n, x))), add2(n, x), y)
if_minsort3(true, add2(n, x), y) -> add2(n, minsort2(app2(rm2(n, x), y), nil))
if_minsort3(false, add2(n, x), y) -> minsort2(x, add2(n, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
RM2(n, add2(m, x)) -> IF_RM3(eq2(n, m), n, add2(m, x))
IF_RM3(true, n, add2(m, x)) -> RM2(n, x)
IF_RM3(false, n, add2(m, x)) -> RM2(n, x)
POL(0) = 2
POL(IF_RM3(x1, x2, x3)) = 1 + x2 + 2·x3
POL(RM2(x1, x2)) = 2 + x1 + 2·x2
POL(add2(x1, x2)) = 2 + 2·x2
POL(eq2(x1, x2)) = 1
POL(false) = 2
POL(s1(x1)) = 2 + 2·x1
POL(true) = 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
eq2(0, 0) -> true
eq2(0, s1(x)) -> false
eq2(s1(x), 0) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
app2(nil, y) -> y
app2(add2(n, x), y) -> add2(n, app2(x, y))
min1(add2(n, nil)) -> n
min1(add2(n, add2(m, x))) -> if_min2(le2(n, m), add2(n, add2(m, x)))
if_min2(true, add2(n, add2(m, x))) -> min1(add2(n, x))
if_min2(false, add2(n, add2(m, x))) -> min1(add2(m, x))
rm2(n, nil) -> nil
rm2(n, add2(m, x)) -> if_rm3(eq2(n, m), n, add2(m, x))
if_rm3(true, n, add2(m, x)) -> rm2(n, x)
if_rm3(false, n, add2(m, x)) -> add2(m, rm2(n, x))
minsort2(nil, nil) -> nil
minsort2(add2(n, x), y) -> if_minsort3(eq2(n, min1(add2(n, x))), add2(n, x), y)
if_minsort3(true, add2(n, x), y) -> add2(n, minsort2(app2(rm2(n, x), y), nil))
if_minsort3(false, add2(n, x), y) -> minsort2(x, add2(n, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
MINSORT2(add2(n, x), y) -> IF_MINSORT3(eq2(n, min1(add2(n, x))), add2(n, x), y)
IF_MINSORT3(true, add2(n, x), y) -> MINSORT2(app2(rm2(n, x), y), nil)
IF_MINSORT3(false, add2(n, x), y) -> MINSORT2(x, add2(n, y))
eq2(0, 0) -> true
eq2(0, s1(x)) -> false
eq2(s1(x), 0) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
app2(nil, y) -> y
app2(add2(n, x), y) -> add2(n, app2(x, y))
min1(add2(n, nil)) -> n
min1(add2(n, add2(m, x))) -> if_min2(le2(n, m), add2(n, add2(m, x)))
if_min2(true, add2(n, add2(m, x))) -> min1(add2(n, x))
if_min2(false, add2(n, add2(m, x))) -> min1(add2(m, x))
rm2(n, nil) -> nil
rm2(n, add2(m, x)) -> if_rm3(eq2(n, m), n, add2(m, x))
if_rm3(true, n, add2(m, x)) -> rm2(n, x)
if_rm3(false, n, add2(m, x)) -> add2(m, rm2(n, x))
minsort2(nil, nil) -> nil
minsort2(add2(n, x), y) -> if_minsort3(eq2(n, min1(add2(n, x))), add2(n, x), y)
if_minsort3(true, add2(n, x), y) -> add2(n, minsort2(app2(rm2(n, x), y), nil))
if_minsort3(false, add2(n, x), y) -> minsort2(x, add2(n, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
IF_MINSORT3(true, add2(n, x), y) -> MINSORT2(app2(rm2(n, x), y), nil)
Used ordering: Polynomial interpretation [21]:
MINSORT2(add2(n, x), y) -> IF_MINSORT3(eq2(n, min1(add2(n, x))), add2(n, x), y)
IF_MINSORT3(false, add2(n, x), y) -> MINSORT2(x, add2(n, y))
POL(0) = 0
POL(IF_MINSORT3(x1, x2, x3)) = x2 + x3
POL(MINSORT2(x1, x2)) = x1 + x2
POL(add2(x1, x2)) = 2 + x2
POL(app2(x1, x2)) = x1 + x2
POL(eq2(x1, x2)) = 0
POL(false) = 0
POL(if_min2(x1, x2)) = 1
POL(if_rm3(x1, x2, x3)) = x3
POL(le2(x1, x2)) = 2·x1
POL(min1(x1)) = 0
POL(nil) = 0
POL(rm2(x1, x2)) = x2
POL(s1(x1)) = 2·x1
POL(true) = 0
app2(nil, y) -> y
if_rm3(false, n, add2(m, x)) -> add2(m, rm2(n, x))
rm2(n, nil) -> nil
app2(add2(n, x), y) -> add2(n, app2(x, y))
if_rm3(true, n, add2(m, x)) -> rm2(n, x)
rm2(n, add2(m, x)) -> if_rm3(eq2(n, m), n, add2(m, x))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
MINSORT2(add2(n, x), y) -> IF_MINSORT3(eq2(n, min1(add2(n, x))), add2(n, x), y)
IF_MINSORT3(false, add2(n, x), y) -> MINSORT2(x, add2(n, y))
eq2(0, 0) -> true
eq2(0, s1(x)) -> false
eq2(s1(x), 0) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
app2(nil, y) -> y
app2(add2(n, x), y) -> add2(n, app2(x, y))
min1(add2(n, nil)) -> n
min1(add2(n, add2(m, x))) -> if_min2(le2(n, m), add2(n, add2(m, x)))
if_min2(true, add2(n, add2(m, x))) -> min1(add2(n, x))
if_min2(false, add2(n, add2(m, x))) -> min1(add2(m, x))
rm2(n, nil) -> nil
rm2(n, add2(m, x)) -> if_rm3(eq2(n, m), n, add2(m, x))
if_rm3(true, n, add2(m, x)) -> rm2(n, x)
if_rm3(false, n, add2(m, x)) -> add2(m, rm2(n, x))
minsort2(nil, nil) -> nil
minsort2(add2(n, x), y) -> if_minsort3(eq2(n, min1(add2(n, x))), add2(n, x), y)
if_minsort3(true, add2(n, x), y) -> add2(n, minsort2(app2(rm2(n, x), y), nil))
if_minsort3(false, add2(n, x), y) -> minsort2(x, add2(n, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINSORT2(add2(n, x), y) -> IF_MINSORT3(eq2(n, min1(add2(n, x))), add2(n, x), y)
IF_MINSORT3(false, add2(n, x), y) -> MINSORT2(x, add2(n, y))
POL(0) = 2
POL(IF_MINSORT3(x1, x2, x3)) = 2 + x2
POL(MINSORT2(x1, x2)) = 2 + 2·x1
POL(add2(x1, x2)) = 2 + 2·x2
POL(eq2(x1, x2)) = 0
POL(false) = 2
POL(if_min2(x1, x2)) = 2
POL(le2(x1, x2)) = 2·x1 + 2·x2
POL(min1(x1)) = 2
POL(nil) = 0
POL(s1(x1)) = 2·x1
POL(true) = 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
eq2(0, 0) -> true
eq2(0, s1(x)) -> false
eq2(s1(x), 0) -> false
eq2(s1(x), s1(y)) -> eq2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
app2(nil, y) -> y
app2(add2(n, x), y) -> add2(n, app2(x, y))
min1(add2(n, nil)) -> n
min1(add2(n, add2(m, x))) -> if_min2(le2(n, m), add2(n, add2(m, x)))
if_min2(true, add2(n, add2(m, x))) -> min1(add2(n, x))
if_min2(false, add2(n, add2(m, x))) -> min1(add2(m, x))
rm2(n, nil) -> nil
rm2(n, add2(m, x)) -> if_rm3(eq2(n, m), n, add2(m, x))
if_rm3(true, n, add2(m, x)) -> rm2(n, x)
if_rm3(false, n, add2(m, x)) -> add2(m, rm2(n, x))
minsort2(nil, nil) -> nil
minsort2(add2(n, x), y) -> if_minsort3(eq2(n, min1(add2(n, x))), add2(n, x), y)
if_minsort3(true, add2(n, x), y) -> add2(n, minsort2(app2(rm2(n, x), y), nil))
if_minsort3(false, add2(n, x), y) -> minsort2(x, add2(n, y))